
Improved Surface Integral Equation-Based Formulation 

for Characteristic Modes of Composite Metallic-

Dielectric Objects

I. INTRODUCTION

Theory of characteristic modes (TCM) has attracted much interest in EM

community because it affords a convenient approach to determine the

resonant behavior and get modal solutions of arbitrarily-shaped objects,

without considering specific excitation sources. However, it is challenging

to calculate the characteristic modes (CMs) of complex structures,

especially for those structures including dielectric bodies. For such

structures, the volume integral equation (VIE)-based CM formulation is

robust but very time-consuming. The surface integral equation (SIE)-

based CM formulations require that one of the equivalent electric and

magnetic currents on dielectric surfaces must be eliminated to suppress

spurious modes. Existing SIE-based CM formulations use an improper

way to conduct the elimination by assuming that incident fields are zero,

which is not natural. In this paper, we propose a more natural way to

develop two newly improved SIE-based CM formulations. Numerical

results show that the proposed formulations can provide accurate modal

solutions to composite metallic-dielectric problems.

II. DERIVATION OF FORMULATIONS

Considering a composite metallic-dielectric object shown in Fig. 1a, the

object can be decomposed into separated structures by contact-region

modeling technique, as displayed in Fig. 1b. Applying the surface

equivalence principle to the problem of Fig. 1b, it can be decomposed

into two sub-problems, as shown in Fig. 1c and 1d.

III. RESULTS AND CONCLUSION

Comparing the modal results of a spherical conductor with three-layer

dielectric coatings solved from the VIE-based method (FEKO) and the

proposed methods shows that they provide similar modal solutions, as

shown in Fig. 3 and 4. Since the VIE-based method is robust, it can be

concluded that the proposed formulations are robust, too.

Fig. 1. Configuration of a composite metallic-dielectric object and its 

equivalent problems. (a) Original configuration. (b) Decomposed 

by contact-region modeling technique. (c) External equivalent 

problem. (d) Internal equivalent problem.
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Above equations demonstrate that the equivalent electric and magnetic

currents on the dielectric surfaces satisfy inherent independent

relationship that is independent on incident fields. In the derive of CM

formulations, the dependent relationship should be applied to suppress

spurious modes. The most commonly used approach is to eliminate one

of the electric and magnetic currents by using the dependent relationship.

Combining the equations of external and internal problems, we have
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Eliminating one of the electric and magnetic currents on the dielectric

surface by using the dependent relationship, we have

or
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Finally, CMs are solved by following generalized eigenvalue equations

m m

n

d dn n

J J

J J


   
 =    
      

J JX R
m m

n

d dn n

J J

M M


   
 =    
      

M MX R

in which

2

2

H

H

j

j


 = +


+
=


 −

=


J J J

J J
J

J J
J

Z R X

Z Z
R

Z Z
X

2

2

H

H

j

j


 = +


+
=


 −

=


M M M

M M
M

M M
M

Z R X

Z Z
R

Z Z
X

In the internal equivalent problem, it is assumed that the fields inside the

dielectric region remain unchanged, while the fields outside it are zero.

Based on the boundary conditions on the dielectric surface, we have

In the external equivalent problem, it is assumed that the fields inside

the dielectric and metallic regions both are zero, while the fields in the

background media remain unchanged. According to the surface

equivalence principle, we have

or

Fig. 2. Sectional view of a spherical 

conductor with three-layer 

dielectric coatings.

Fig. 3. Eigenvalues of four lowest 

modes obtained from the VIE-

based method (solid lines) and 

the proposed method (symbols).
(a) (b)

Fig. 4. Modal currents on the metallic 

surface at the lowest resonant 

frequency. (a) VIE-based method. 

(b) Proposed method.


